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Abstract— Based on alpha-stable distributional modelling,
we have proposed a set of parametric measures to analyze
long-term heart rate variability(HRV). The set, in difference
from standard measures, accommodates premature beats in
the HRV analysis. It preserves the structure of standard
measures, redefines many of them and includes new mea-
sures. The rationale of the method was demonstrated by
simulations. We found that the standard measures SDANN
and SDNNIndex were strongly correlated to their para-
metric counterparts SDARR and SRRIndex, DRRIndex in
a group of normal subjects (correlation coefficients 0.979,
0.939, 0.999) and less so in a group of patients (0.942, 0.544,
0.463). Statistical tests indicated that the new parametric
measures could better differentiate better between the two
groups.

Keywords— Heart rate variability, alpha-stable distribu-
tion, premature beats.

I. Introduction

Various statistical measures are proposed to analyze long-
term (usually 24 h) heart rate variability signal(HRV) or more
specifically the RR-interval signal (the sequence of intervals be-
tween consecutive R peaks on QRS complexes of the ECG sig-
nal). Recommended standard measures [1] are used to analyze
long-term HRV signals that consist of normal-to-normal (NN)
intervals, i.e. RR intervals that originate exclusively from si-
nus node depolarizations. In practice, the NN-interval signal
is obtained from the RR interval signal from which all ’non-
normal’ intervals are removed or replaced by interpolated values
of neighboring NN samples.

In general, relevant outlier information, such as premature-
beats (PB) and arrhythmic episodes, can not be accommodated
by the standard analysis as their presence could render most of
the measures unreliable. On the other hand removal or replace-
ment of PB from the RR-interval signals would generally distort
the correlation structure of the signal especially when the num-
ber of PB is high [2].

Development or modification of analysis tools to process the
physiological RR-interval (instead of the edited NN-interval sig-
nal) would provide an unified view of the HRV. It might con-
tribute amongst others to the study of arrhythmia onset, which
often is preceded by PB events. Fig. 1 depicts an RR-interval
signal with premature ventricular beats(PVB). A salient char-
acteristic of the signal (Fig. 1) is the presence of impulses.

An apparent advantage of the standard time-domain mea-
sures is that they are not explicitly associated to any specific
distribution. On the other hand, as in case of impulsive RR-
interval signals, the measures could become unreliable. Forcing
an αS, or any other, distributional model, carries the risk of
model misfit. Nevertheless, the αS model has four distributional
parameters with which it could approximate various unimodal
distributions. Using the α-stability test [3], it was shown that
the alpha-stable (αS) distribution provided a good fit to the
HRV data when modelling short-term NN-interval signals [4]
and RR-interval signals with PB [5].
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Fig. 1. RR-interval signal with premature ventricular beats.

Other heavy-tailed distributions, such as generalized Gaus-
sian distribution and t-distribution, could also be used to model
the RR-interval signals but they would lack the flexibility of the
αS model (being symmetrical and characterized by a single pa-
rameter). On the other hand a Gaussian-mixture distribution
(e.g. in a signal plus noise model) could be a viable alternative.
of PVB and PAB).
Here we applied the αS distributional model to long-term

RR-interval signal and derived appropriate measures to analyze
it. Some of the measures were found correlated to standard
measures whilst the others provided additional information able
to statistically differentiate between groups of normal subjects
and patients.

II. Method

A. Alpha-stable distributional modelling

Alpha-stable (αS) distribution [6] Sα(β, γ, δ) is a family of
heavy-tailed distributions that possesses many attractive prop-
erties. So, the generalized central limit theorem states that
the αS distribution is the only possible limit distribution of
the sum of randomly, independently and identically distributed
data. The distribution have been successfully applied to model
impulsive noise of various sources [7]
The αS distribution is defined by the characteristic function

φ(t) = exp{jδt− γ|t|α[1− jβsign(t)ω(t, α)] (1a)

where

ω(t, α) =

{
tan(απ

2
), α �= 1

− 2
π
log |t|, α = 1, and

(1b)

sign(t) =

{
t/|t|, t �= 0
0, t = 0

(1c)

and

α ∈ (0, 2], β ∈ [−1, 1], γ ∈ (0,∞) and δ ∈ (−∞,∞). (1d)
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The distribution’s parameters are: (i) the characteristic ex-
ponent α, (ii) the symmetry parameter β, (iii) the dispersion γ,
and (iv) the location δ. The αS distribution becomes symmet-
ric for β = 0. Gaussian(α = 2, β = 0), Cauchy(α = 1, β = 0)
and Lévi (α = 1/2, β = 1) distributions are special cases of
the αS distribution. Only (fractional) moments m of order
−1 < m < α do exist. The variance (m = 2) and mean (for
m < 1) are infinite.

The impulsive characteristics of the RR-interval signal, with
and without PB, could be accommodated by the heavy tails
and the skewness of the αS distributions [4], [5]. Thus, the
parameter α could depict the impulsiveness of the RR interval
signal, β the symmetry of the data, γ the dispersion of the RR
interval signal (the variance that does not exists), and δ the
location of data.

On the following, instead of dispersion γ, we would use the
measures

ς = γ
1
2
√
2 (2)

c = γ
1
α
√
2 (3)

named respectively deviation(D) and scale(S). The measure
c/
√
2 can be directly obtained from the linear regression

of log(− log(|φ(t)|2) (1a) [8]. In case of Gaussian distribu-
tion(α = 2) they would equal the distribution parameter σ.

B. Standard and nonparametric αS measures

First, we have listed the recommended standard measures [1]
using the notations σ̂ and µ̂ for respectively sample standard
deviation(SD) and sample mean.

• SDNN = σ̂, the SD of all NN intervals.
• RMSSD � SDSD = σ̂(∆), where ∆ is the first backward
difference of the NN-interval signal.
• SDANN = σ̂(µ̂K), where µ̂K indicates the array
{ µ̂1, µ̂2, . . . , µ̂K } of sample averages of sequential data seg-
ments of equal five minutes lengths.
• HRV index = N/H, where N is the number of NN intervals
and H the maximum value of the histogram.

Another related measures, to be referred later on, is

• SDNNIndex = µ̂(σ̂K), where σ̂K indicates the array
{σ̂1, σ̂2, . . . , σ̂K} and σ̂k is the SD of data on segment k.

Then, we modified the above time-domain measures based
on the assumption that data could be modelled by an αS dis-
tribution. Whenever possible we kept the standard notation
and simply substituted the notation ’RR’ for ’NN’. Otherwise,
the notation ’SD’ was substituted by the symbols ’D’ and ’S’
respectively for measures of deviation and scale. The mapping
of standard measures ( mathematically described inside square
brackets) yielded

SDNN[σ̂] −→ DRR[ς̂] (4)

SDSD[σ̂(∆̂)] −→ DSD[ς̂(∆̂)] (5)

SDANN[σ̂(µ̂K)] −→ SDARR[σ̂(δ̂K)] (6)

SDNNIndex[µ̂(σ̂K)] −→ DRRIndex[µ̂( ˆςK)] (7)

The SDNN and SDNNIndex measures could alternatively be
mapped to

SDNN[σ̂] −→ SRR[ĉ] (8)

SDNNIndex[µ̂(σ̂K)] −→ SRRIndex[µ̂(ĉK)] (9)

The set of global measures, including DRR and SRR, becomes

α̂, β̂, ς̂ or ĉ, and δ̂. (10)

This set could parameterize the probability density function
(PDF) of the data and provide similar information to the geo-
metrical(distributional) measures [1].
Care should be exerted as the set of global measures might not

be appropriate when considering 24-h HRV recordings, which
are basically non-stationary. One could use instead the mea-
sures

µ̂(α̂K), µ̂(β̂K), DRRIndex or SRRIndex, and µ̂(δ̂K) (11)

σ̂(α̂K), σ̂(β̂K), σ̂(ς̂K) or σ̂(ĉK), and SDARR (12)

which capture correspondingly the low and high-frequency vari-
ations of αS parameters. The sequences α̂K , β̂K , ς̂K , and ĉK

denote the corresponding parameter arrays estimated from five
minutes segments.
The information contained in the HRV-Index, which was sim-

ply renamed to RR-index, could be captured by the parameters
of the αS distribution and might not be included on the set of
parametric measures.
The obtain the above parametric measures the RR-interval

signal would need to be whitened. Assuming that data can be
modelled by a linear autoregressive model A(z) we estimated the
model parameters using the least-squares method, which was
shown to be applicable to symmetrical αS processes in [7], and
whitened the signal by the inverse filter A−1(z). The trimmed
mean(± 25%) was preliminarily removed from the correlated
signal and was added back to the whitened signal, which was
also scaled to have the SD of the original signal.

C. Simulation

We illustrated the differences between distribution-free mea-
sures and parametric measures through Monte Carlo simula-
tions. Five hundred data segments of length 1000 samples were
generated from a t-distribution with various degrees of free-
dom(DF). The t-distribution was specifically chosen as it’s PDF
varies from a heavy tailed distribution to a Gaussian one with
the increase of DF; for two DF the t-distribution, likewise the
αS distribution, has infinite variance.
We compared the non-parametric SD (σ̂) with measures D

(ς̂) and S (ĉ) of the αS distribution model; the other measures
are derived from these basic measures. Thus, SD enters SDNN,
SDSD and SDNN-index measures whereas D enters DRR, DSD
and DRR-index; similarly S is included in SRR, SSD, and SRR-
index.
The simulation likens the clinical situations where the HRV

signal could be ’well-behaved’ or display impulsive characteris-
tics. One could could either use the non-parametric estimate σ̂
(after removing all non-normal beats) or, on indication of im-
pulses, model the data by an heavy tailed αS distribution and
estimate the parameters ς and c.

D. HRV analysis

We evaluated the proposed method in 18 subjects which un-
derwent 24-hour Holter ECG recording(DelMar AvionicsTM),
because of perceived palpitations. Eleven subjects were clas-
sified normal (group I) and the seven others, which had more
than 1000 PVB per 24h, as non-normal (group II).
The recordings begun around 10 AM (except two records

which started at 2 PM). The HRV signals were extracted from
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Fig. 2. The RR-interval signal (top) and sequences of αS parameters.
evolution

the ECG signals sampled at 128 Hz and quantized to 12 bit res-
olution. Annotation of beat types was done on the ECG signal
by an experienced operator. The length of HRV data files was
about 100000 samples. First we rejected the artifacts to obtain
the RR-interval signals, and then the non-normal beats to ob-
tain the NN-interval signals. In average, the number of rejected
beats in group I was 0.558% (0.478%) for the NN-interval signals
and 0.500% (0.468%) for the RR-interval signals. In group II
the corresponding numbers were respectively 2.412% (3.189%)
and 21.39% (15.176%)—proportions in parenthesis denote the
SD in percentage.

From the standard analysis we obtained first the SDNN,
RMSSD, and SDNNIndex measures on both NN and, for com-
parison, RR intervals signals. Then, we analyzed the long-term
RR-interval signals from each group using the αS parametric
measures obtained from the sequences α̂K , β̂K , ĉK , ς̂K , and δ̂K .
Fig. 2 shows these sequences for a subject in group; each dot in
the graph corresponds to a parameter value (of a five minutes
segment length), whereas its absence indicates that the corre-
sponding parameter is out of range, either due to estimation
error or model misfit.

III. Results

Results of simulations (section II-C) are shown in Table I.
Table entries are the sample mean, SD(in parenthesis) and co-
efficient of variation(CV)(in percentage) of the estimates of σ,
ς, c and α. The SD of the parametric estimates were lower
then the SD of σ (Table I), more so when the number of DF
decreases, i.e. the signal gets more impulsive. When the dis-
tribution approached the Gaussian distribution (DF � 30), the
estimates converged to SD, which in this case yielded the best
estimate. The coefficients of variations showed a similar behav-
ior. The parameter α had the lowest CV, whereas CV of c and
ς were lower than σ̂ respectively for DF ≤ 7 and DF ≤ 5.

It should be mentioned that neither ς̂ nor c were (thought to
be) estimates of σ. Except for normal distributed data they do
not not equal the SD. The information contained in σ was spread
to the parameters ς and α, or mapped to the scale parameter
c; in both cases with smaller estimation error variance.

Table II shows the results of αS analysis. The upper part of
the table delineates the group I of normal subjects whereas the
lower part the group II of patients.

We evaluated first the relations of measures SDNN, SDANN

TABLE I

Estimation of σ and parametric measures of data from an

”arbitrary” distribution

DF σ σ̂ ς̂ ĉ α̂
2 ∞ 3.223 1.270 1.217 1.432

(2.927) (0.033) (0.047) (0.053)
90.816% 3.792% 3.868% 3.754%

3 1.732 1.710 1.202 1.162 1.653
(0.247) (0.033) (0.041) (0.048)
14.444% 3.573% 3.608% 2.956%

5 1.291 1.292 1.126 1.102 1.823
(0.053) (0.029) (0.033) (0.038)
4.102% 3.830% 3.050% 2.106%

7 1.183 1.185 1.093 1.076 1.886
(0.036) (0.028) (0.031) (0.030)
3.038% 3.810% 2.951% 1.630%

10 1.118 1.117 1.065 1.054 1.929
(0.031) (0.027) (0.029) (0.025)
2.775% 3.866% 2.814% 1.313%

30 1.035 1.036 1.020 1.017 1.980
(0.024) (0.025) (0.026) (0.017)
2.316% 4.057% 2.603% 0.892%

and SDNNIndex from the sets of NN and (unproperly) of RR
interval signals. The correlation coefficients (CC) were respec-
tively 0.9994, 1, 0.9996 in group I and 0.9908, 0.4464, 0.9414 in
group II.

Second, the CC of SDANN, SDARR as well as of SDNNIndex,
SRRIndex and SDNNIndex, DRRIndex are given in Table III.
The strong correlation between standard and αS measures in
normal subjects (group I), decreased markedly (SDARR and
DRRIndex), in Group II. Fig. 3 shows the SDNNIndex and
SRRIndex measures of groups I and II.

Third, the statistical differences between groups were as-
sessed using the Wilcoxon rank sum test (which assesses a me-
dian shift between two identical distributions) and a directional
parametric t-test. Both tests yielded equivalent results.

From the standard measures SDANN, SDNNIndex, SDNN
and the modified measures SDARR, SRRIndex and DRRIndex
measures, only the SDNNIndex and SRRIndex were able to re-
ject the null hypothesis (p-values 0.04 and 0.02). The measures
in the Group I were smaller then those in Group II.

From the new measures(left part on Table II) we found
that µ̂(α̂K), was higher in the normal group and σ̂(α̂K) lower.
The parameter µ̂(β̂K)could not differentiate the groups whereas
σ̂(β̂K) was larger in the normal group.

IV. Discussion

The µ̂(α̂K) was, as expected, higher in Group I then in Group
II, indicating that the HRV in normal group is less impulsive
(fewer PB) then in patients’ group. The measure σ̂(α̂K) was
lower in Group I, which might indicate a smooth long-term
characteristic as opposed to a more burst-like characteristic on
Group II. The higher value of parameter σ̂(β̂K) would need to
be examined closer—it might be an intrinsic feature of HRV or
might indicate the dominance of PB in β or reflect the estima-
tion error of β when α get closer the value two(Fig. 2).

The estimation of the parametric measures is less straightfor-
ward than that of standard measures. The degree of whitening
on each data segments might vary, effecting the quality of the
αS estimates. Also, scaling of the the whitened data to the
SD of the HRV signal is rather artificial and could introduce
inaccuracies.
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TABLE II

Parametric α-stable analysis

µ̂(α̂K) µ̂(β̂K) µ̂(ĉK) µ̂(ς̂K) µ̂(δ̂K)

(σ̂(α̂K)) (σ̂(β̂K)) (σ̂(ĉK)) (σ̂(ς̂K)) (σ̂(δ̂K))

SRRIndex DRRIndex (SDARR)

1.739 -0.007 26.782 18.920 673.837

(0.229) (0.605) ( 2.734) ( 9.720) ( 91.757)

1.780 -0.130 47.021 30.603 801.044

(0.212) (0.566) (19.189) (13.322) (137.139)

1.844 -0.046 30.292 23.080 705.104

(0.161) (0.527) (12.534) ( 9.391) ( 95.207)

1.791 -0.096 38.824 22.391 763.394

(0.195) (0.608) (24.460) (10.733) ( 95.331)

1.823 -0.073 46.838 34.836 822.834

(0.187) (0.570) (18.633) (15.189) (130.209)

1.798 0.037 67.350 45.881 1033.975

(0.227) (0.532) ( 27.28) (22.781) (174.183)

1.779 -0.195 29.849 21.025 839.755

(0.199) (0.567) (15.520) (11.450) (109.935)

1.817 0.033 41.453 30.674 765.958

(0.220) (0.562) (19.137) (14.364) (101.651)

1.828 -0.003 42.079 31.585 765.787

(0.199) (0.557) (18.783) (15.528) (102.264)

1.694 -0.230 70.579 42.436 889.601

(0.299) (0.496) (25.710) (24.722) (175.205)

1.779 -0.222 19.079 13.963 729.465

(0.246) (0.444) (10.134) ( 7.489) ( 56.162)

1.146 -0.187 94.796 28.797 794.847

(0.598) (0.440) (225.219) (48.342) (104.284)

0.994 -0.025 293.648 32.089 760.863

(0.544) (0.390) (2294.476) (47.087) ( 99.103)

1.508 0.011 64.7412 27.784 796.781

(0.322) (0.425) (37.429) (24.098) (146.766)

0.848 -0.356 306.467 28.062 901.394

(0.428) (0.376) (105.276) (58.254) ( 73.432)

1.718 -0.152 85.831 28.527 702.110

(0.298) (0.490) (78.125) (15.822) (113.814)

1.391 0.312 45.691 20.147 734.848

(0.255) (0.342) (28.411) (22.357) ( 73.201)

1.395 0.242 38.018 19.771 736.372

(0.291) (0.322) (25.834) (23.923) (104.496)

TABLE III

Correlation coefficients between standard and parametric

αS measures

Group SDNNIndex/ SDNNIndex/ SDANN/

SRRIndex DRRIndex SDARR

I 0.9771 0.9391 0.9973

II 0.9421 0.5446 0.4631

Further assessment on larger populations would be needed
to fully validate the utility of the αS parametric measures in
clinical practice.
In conclusion, this study has introduced a set of parametric

measures for the analysis of long-term HRV. The measures were
found highly correlated to the standard measures on HRV of
normal subjects and provided additional information on HRV
of patients with ventricular premature beats.
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